Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Most visual analytics systems assume that all foraging for data happens before the analytics process; once analysis begins, the set of data attributes considered is fixed. Such separation of data construction from analysis precludes iteration that can enable foraging informed by the needs that arise in-situ during the analysis. The separation of the foraging loop from the data analysis tasks can limit the pace and scope of analysis. In this paper, we present CAVA, a system that integrates data curation and data augmentation with the traditional data exploration and analysis tasks, enabling information foraging in-situ during analysis. Identifying attributes to add to the dataset is difficult because it requires human knowledge to determine which available attributes will be helpful for the ensuing analytical tasks. CAVA crawls knowledge graphs to provide users with a a broad set of attributes drawn from external data to choose from. Users can then specify complex operations on knowledge graphs to construct additional attributes. CAVA shows how visual analytics can help users forage for attributes by letting users visually explore the set of available data, and by serving as an interface for query construction. It also provides visualizations of the knowledge graph itself to help users understand complex joins such as multi-hop aggregations. We assess the ability of our system to enable users to perform complex data combinations without programming in a user study over two datasets. We then demonstrate the generalizability of CAVA through two additional usage scenarios. The results of the evaluation confirm that CAVA is effective in helping the user perform data foraging that leads to improved analysis outcomes, and offer evidence in support of integrating data augmentation as a part of the visual analytics pipeline.more » « less
-
Abstract Analyzing large and complex datasets for critical decision making can benefit from a collective effort involving a team of analysts. However, insights and findings from different analysts are often incomplete, disconnected, or even conflicting. Most existing analysis tools lack proper support for examining and resolving the conflicts among the findings in order to consolidate the results of collaborative data analysis. In this paper, we present CoVA, a visual analytics system incorporating conflict detection and resolution for supporting asynchronous collaborative data analysis. By using a declarative visualization language and graph representation for managing insights and insight provenance, CoVA effectively leverages distributed revision control workflow from software engineering to automatically detect and properly resolve conflicts in collaborative analysis results. In addition, CoVA provides an effective visual interface for resolving conflicts as well as combining the analysis results. We conduct a user study to evaluate CoVA for collaborative data analysis. The results show that CoVA allows better understanding and use of the findings from different analysts.more » « less
An official website of the United States government
